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Abstract. It is shown that the complete set of polynomial zeros of degree one of the Racah 
coefficients can be obtained only from the full eight-parameter solution of the multiplicative 
Diophantine equation: xyz = uuw subject to the constraint i = x + y + U + U + w. All other 
parametric solutions recently obtained are shown to represent only proper subsets of the 
complete set. 

1. Introduction 

Racah coefficients are related to 6-j  symbols by 

where the 6- j  symbol can be expressed in the form (Regge 1959) 

with 

N = A ( j l  j2j3)A(lll*j,)A(j~1213)A(l~j21,) 

where 

A( p q r )  = {( p + q - r ) !  ( p  - 4 + r ) !  ( - p  + + r ) ! / (  p + q + V +  1)!]1'2. 

The notation is such that (Biedenharn and Louck 1981, p 430) 

a l  =jl+j,+j, P1 = j l +  1, + j 2 +  12 

a2 = I ,  + 12+j3 P* =j1+ I ,  + j ,  + 13 

a,=jl+12+13 P 3 = j 2 + l * + j 3 + / 3  

cy4  = I ,  + j, + l3 

with 
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The summation in (1.1) is over those integer values of P for which 
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max(a , ,  c y 2 ,  a 3 , 4 <  P <  min(P1, P z ,  P3). (1.4) 

The symmetries of the 6- j  symbol are made clear by rewriting it in the form of a 
Bargmann array (Bargmann 1962, Shelepin 1964) 

Pl-aI P 2 - f f 1  P 3 - f f 1  {;: ;: q P 1 - a 2  P 2 - f f 2  P 3 - f f z  

P1-.3 P 2 - a 3  P 3 - & 3  

P l - a 4  P Z F f f 4  P 3 - f f 4  

Without loss of generality it may therefore be assumed that 

a I = m a x ( f f I ,  f f 2 ,  f f 3 ,  a 4 1  PI = min(P1 9 P 2 ,  P 3 ) .  (1.6) 

Following Brudno and Louck (1985) the weight of the 6-j symbol (1.5) is defined to 
be the minimum entry in the Bargman array. With the choice (1.6) the weight of the 
6- j  symbol is PI - a1 and the number of terms in its expansion (1.1) is just one more 
than this number. 

The weight of a non-vanishing 6-j  symbol is necessarily non-negative. Indeed it is 
well known that trivial zeros of the Racah coefficients and the corresponding 6-j symbols 
are associated with the vanishing of the factors A ( p q r )  in N if one or more of the 
usual triangle conditions P, - a ,  5 0 is violated. Weight-zero 6-j  symbols are always 
non-vanishing since their expansion consists of a single term. However, by virtue of 
the alternating signs in (1.1) non-trivial zeros may occur for 6-j symbols of positive 
weight. Recently, such non-trivial zeros, which are also known as polynomial zeros, 
have been the subject of much study. 

Following the publication of the paper by Koozekanani and Biedenharn (1974), 
Biedenharn and Louck (1981, p 415) reviewed the situation and tabulated about 1400 
distinct non-trivial zeros of 6- j  symbols. These have been classified by Srinivasa Rao 
and Rajeswari (1985). Of these zeros, 33 have been accounted for through their 
connection with exceptional Lie algebras as discussed most recently by Van der Jeugt 
et al (1983), De Meyer and Vanden Berghe (1984) and Vanden Berghe et a1 (1984) 
(see also Srinivasa Rao 1985). 

Using a quite different approach several papers have been published on the topic 
of non-trivial zeros of Racah coefficients associated with 6-j symbols of weight 

pl-.l = 1. (1.7) 

Such non-trivial zeros are said to be of degree one. They arise from those expansions 
of the form (1.1) which contain just two mutually cancelling terms of opposite sign. 
Srinivasa Rao and Rajeswari (1984) have pointed out that the cancellation occurs if 
and only if 

( P 2 -  f f l ) ( P 3 - a l ) ( P l  + l )  = (PI - ff2)(P1 - f f 3 ) ( P 1  - a 4 )  (1.8) 

where the convention (1.6) has been adopted, and the parameters defined by (1.2) are 
subject to the condition (1.3) and the constraint (1.7). 

To make contact with the work of Brudno (1985) and of Brudno and Louck (1985), 
who independently arrived at the same result, it is convenient to change the notation 
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of (1.5) to give 

U +  v -  t )  f ( y  + U + w - t )  & ( x + y +  v +  w - 2 t )  
j (x  + w )  2 Y  + 0) j ( x + y +  U - t )  

t 
U 

W =I V 

X 

x + u - t  
x + w - t  
x + v - t  

and to introduce 

z=p,+1.  

y + u - t  
y + w - t  
y + v - t  y 1  

(1.10) 

Term by term comparison of the Bargmann arrays in (1.5) and (1.9) defines the change 
of variables precisely. It follows that the weight-one restriction (1.7) corresponds to 
t = 1. The condition (1.8) for degree-one polynomial zeros now takes the form of the 
multiplicative Diophantine equation 

xyz = uvw. (1.11) 

By virtue of (1.7) and (1.10) the positive integers x,  y ,  z, U, U and w in (1.1 1) are subject 
to the constraint 

z = x + y +  U + v + w. (1.12) 

After giving three one-parameter formulae for degree-one zeros, Brudno (1985) 
presented without proof a more general nine-parameter formula subject to one con- 
straint. That this formula gives all possible degree-one zeros was subsequently proved 
by Brudno and Louck (1985) by explicitly solving the multiplicative Diophantine 
equation (1.11). They went on to relate (1.11) and (1.12) to a pair of Diophantine 
equations involving equal sums of like powers: 

(1.13) x3+ Y 3 + Z 3 =  u3+ v3+ w3 
and 

X + Y + Z = U + V + W .  (1.14) 

They located a two-parameter solution due to Gerardin (Dickson 1952, pp 565, 713). 
Bremner (1986) extended the investigation of (1.13) and (1.14) to produce two four- 
parameter solutions and related them to the Brudno and Louck solution of (1.11). 
Finally, Bremner and Brudno (1986) solved the same Diophantine equations to obtain 
another four-parameter solution which they claimed gave all degree-one zeros of the 
6 3  symbols. 

In this paper we return to the multiplicative Diophantine equation (1.11) and 
establish the most general solution by invoking a theorem due to Bell (1933). This 
theorem is proved and applied to the problem of polynomial zeros in the following 
section. The various parametrisations of solutions referred to above are summarised 
in § 3 and attention is drawn to deficiencies in the arguments of Bremner and Brudno 
(1986). In particular, it is shown that their four-parameter solution, along with all the 
others with fewer than nine parameters, is in a certain sense incomplete. In § 4 the 
implementation of an algorithm for the determination of all polynomial zeros by means 
of a nine-parameter formula subject to one constraint and a set of greatest common 
divisor conditions is discussed. Finally, the claims made in 0 3 are substantiated by 
means of explicit examples in the conclusion. 
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2. Bell’s theorem 

Bell (1933) studied seven types of multiplicative Diophantine equations and by making 
use of ‘reciprocal arrays’ established the most general solutions expressed in terms of 
the minimum possible number of parameters. The solutions all involve greatest com- 
mon number of parameters. The solutions all involve greatest common divisor (GCD) 
conditions. As usual, given any non-negative integers x and y the GCD of x and y is 
denoted by (x, y ) .  We write xly  if x divides y in the sense that y/x is an  integer, and 
conversely write xify if x does not divide y. From our point of view the key theorem 
is the following. 

Bell’s theorem. Every solution of the multiplicative Diophantine equation 

X ] X 2 . .  . x ,  = U ] U 2 . .  * U, (2.1) 

can be expressed in the form 

where the n 2  independent parameters 4,J with i , j  = 1 , 2 , .  . . , n are positive integers 
which can be arranged in an  n x n array A ( + )  with 4,J at the intersection of the ith 
row and j t h  column subject to the GCD conditions 

(xz,  U,) = 4II for i = 1 , 2 ,  . . . ,  n (2.3) 

applying to the diagonal elements of the array. 

It is to be noted that this statement of Bell’s theorem only differs from the original in 
that the two reciprocal arrays of Bell (1933) have been replaced by a single array A( 4 ) .  
To prove the theorem for all values of n it is probably simplest to follow an  inductive 
argument reminiscent of that used by Brudno and Louck (1985) but taking into account 
the GCD conditions and  not allowing permutations of the components x, and U, for 
i = 1 , 2 , .  . . , n. We let 

~ 1 x 2 . .  . X ,  = u , u ~ .  . . U,, = N (2.4) 

and  the induction argument is made with respect to the parameter N, keeping n fixed 
throughout. 

Bell’s theorem is obviously true for N = 1. The only solution is x ,  = U ,  = 1 for 
i = 1 , 2 , .  . . , n and correspondingly = 1 for all i, j = 1 , 2 , .  . . , n. For the induction 
hypothesis we assume that all the solutions of (2.4) are given by Bell’s theorem for 
N = 1 , 2  , . . . ,  M - 1  with M > 1 .  

Now we consider two cases: firstly any solution of (2.4) with N = M for which 

(x,, U,) = 9 with 1 < q S N for some i E {1,2, . . . , n}. ( 2 . 5 )  

Cancelling q throughout (2.4) with N =  M gives a n  equation of the same type with 
N = M / q .  By the induction hypothesis all the solutions of this equation are given by 
Bell’s theorem for some array A ( 4 ’ ) .  Having divided both x ,  and U, by q it is clear 
that 4:1 = 1. Simply multiplying this element at the intersection of the ith row and ith 
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column of the array A ( + ‘ )  by q and leaving all the other elements unaltered then gives 
the required array A ( + )  for the original solution of (2.4) with N = M. The GCD 

conditions are automatically satisfied. 
Secondly, there remains only the case for which 

( X I ,  U,) = q = 1 for all i E { 1,2, . . . , n } .  (2.6) 

Since M > 1 it follows that there exists some prime p > 1 such that plM.  Correspond- 
ingly there exists x, and U, with i # j such that pix, and plu,. Cancelling p throughout 
(2.4) with N = M then gives an equation of the type (2.4) with N = M / p .  By the 
induction hypothesis any solution of this equation gives an array A( 4’) satisfying the 
GCD conditions. In fact by virtue of (2.6) all the diagonal entries are 1. Multiplying 
the entry 41 at the intersection of the ith row and j th  column by p and again leaving 
all the other elements unaltered then gives the array A ( + )  required to represent the 
solution of (2.4) with N = M. The GCD condition is still satisfied because the diagonal 
entries are still just 1. 

This completes the induction argument and Bell’s theorem is proved provided that 
we can show that the n 2  parameters are genuinely independent. This can be seen most 
easily by considering those solutions of (2.1) of the form (2.2) for which the n 2  
parameters 4, take on n2 distinct prime values. To generate the complete set of such 
solutions for arbitrary N it is clear that all n 2  parameters are required. 

It is worth pointing out that in general for n > 3 it is not true that all distinct arrays 
A ( + )  satisfying the GCD conditions (2.3) give distinct solutions. However, this is the 
case for n 6 3. This is trivial for n = 1 and n = 2. For n = 3 it can be proved by noting 
that if A ( + )  and A ( + ‘ )  are different but correspond to the same solution of (2.1), then 
there exists some prime p > 1 and some pair ( i ,  j) with i # j such that 

In order that the arrays A( 4 )  and A( 4 ’ )  correspond to the same solution the products 
of the elements in their ith rows must coincide, as must the products of the elements 
in their j th  columns. Hence, taking into account the fact that their diagonal elements 
also coincide, there must exist k such that 

PI&k with {i, j ,  k }  c {1,2, .  . . , n }  and k # i # j # k (2.8) 

and m such that 

P l + C  with{i,j,m}E{1,2 , . . . ,  n}and m # i # j # m .  (2.9) 

(2.10) 

for some integer p 2 1, and we have a contradiction for p >  1. It follows that, for 
n = 3, distinct arrays A ( + )  satisfying the GCD conditions (2.3) lead by means of (2.2) 
to distinct solutions (2.1) and vice versa. Applying this result to the degree-one zeros 
discussed in the introduction we obtain the following. 

Theorem. The degree-one polynomial zeros of 6-j symbols are all given, up to symmetry 
transformations, by (1.9) with t = 1 and xyz = uuw, where z = x + y + U + u + w. All 
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possible solutions to these equations are specified by the distinct arrays of the form 

Z 

(2.11) 

where (x, y ,  z, U, U, w )  are given by the products of the elements in the appropriate 
rows and columns of this array. The entries (a ,  b, c, d, e,J; g, h, i )  take on all positive 
integer values consistent with the conditions 

ghi = adg + beh + cf; + abc + def (2.12) 

and 

( b ,  d )  = (b, g )  = ( b , f )  = (c, d )  = (c, g )  = (c,  h )  

= ( 4  h )  = ( A  8) = ( J ;  h )  = 1. (2.13) 

This theorem makes it obvious that the complete set of solutions of the equation (2.4) 
constrained by (2.3) requires a minimum of eight parameters (since (2.12) can be used 
to eliminate one of the nine parameters). Brudno (1985) has written down the nine- 
parameter solution of (2.4) for n = 3 and in terms of this he showed that the polynomial 
zeros of degree one of the Racah coefficient are given by 

(2.14) 

where x, y ,  z and U, U, w are given by the products of the row and column elements of 
the 3 x 3 array (2.11), respectively. 

For an alternative proof of Bell’s theorem (2.1) for n = 2 and 3, and the general 
result for arbitrary n by induction, refer to Srinivasa Rao et a1 (1987). 

I jI j ,  j 3  f ( x + u + v - l )  + ( y + u + w - l )  $ ( z - u - ~ )  {I, I, ,I = {  $(x+ w )  $ ( y  + U )  $ ( x + y +  U - 1) 

3. Comparison with other parametrisations 

Brudno (1985) found the following one-parameter formulae for degree-one zeros of 
the 6- j  symbols: 

; x+2  ;x+2  x+2}+{3n+$ ;n+f  (3.2) 
x+ ;  ; ;x+; n + f  f 

and 

with m, n, and b = 1,2, .  , . , where in (3.1) and (3.3) the symmetries of the 6-j symbol 
have been exploited to write them in the form (1.9) with t = 1. These three cases are 
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x 
+ y 

z 

covered in the notation of (2.11) by means of the arrays 

1 

respectively. 
By solving the pair of Diophantine equations (1.13) and (1.14) for sums of like 

powers, Brudno and Louck (1985) determined the two-parameter solution specified 
by the array 

ps+3qr+4qs f r  P 
-+pr+qr+&p 1 pr - q r -  qs (3.6) 

1 p 2 r + 2 q 2 r + 3 q 2 s  Sr+ts  

9 - P  (3.4) 
z 3 b + h  4b+3h  

with b, h = 1 ,2 , .  . . . By the same means Bremner (1986) obtained the solutions given 
by the arrays 

CY - 2 p  (3.5) 
z 1 y + 2 6  CY+@ 

with a, b, d, h = 1 ,2 , .  . . and 

I U V W 

I U U W 

P4 - rs f i - a b  . (3 .7)  
i 

Clearly this solution is not complete in the sense that varying p, q, r and s over all 
positive integers subject to the obvious requirement pq > rs does not generate all 
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possible solutions. For example, the very well known solution 

corresponding to x = y = 1, U = U = w = 2 and  z = 8, specified by the array 

I- 2 2 2 2  
(3.9) 

cannot be obtained from (3.7) with integer parameters. A clue to this omission comes 
from noticing that it may be recovered from (3.7) by setting 

= = 2(3)1/3 r = s = (f)”’. (3.10) 

The explanation for this lies in the fact that in deriving the solution (3.7) to (1.13) and  
(1.14) Bremner and  Brudno have made successive transformations from the parameters 
( X ,  Y,  2, U, V, W) to ( a ,  p, y, 8) to ( p ,  q, r, s). However, at one stage a denominator 
is removed, with the justification that their original equations (1.13) and (1.14) are 
homogeneous. Quite apart from the fact that such a step is not appropriate in dealing 
with Diophantine equations, the weight-one 6- j  symbols are not themselves 
homogeneous in any of the sets of parameters since their definition involves setting 
t = 1 in (1.9). In terms of the parameters ( p ,  q, r, s)  of Bremner and  Brudno (1986), 
the hidden change of parameters is such that in their solution (27) these four parameters 
should be replaced by 

P’=P/[2(pq-rs)11’3 q’ = q / m q  - r w 3  
(3.11) 

The substitution of the values p = q = 4 and  r = s = 2 then gives p ’  = q’ = 2(f)”3 and 
r /  = s f  = (f)1/3 , which as noted in (3.10) are precisely those values enabling (3.9) to be 
recovered from (3.7). 

It is perhaps worth pointing out that a four-parameter solution very closely related 
to (3.7) may be very trivially obtained from the complete solution (2.11) merely by 
rearranging the elements as below, taking care to preserve all row and column products: 

r r =  r/[2(pq - rs)31/3 s ’= s/[2(pq - r . ~ ) ] ” ~ ,  

* Y  

Z 

U v w  
a 1 1  
d 1 1 .  

a + d + h + i  
hi - ad  

h i  

(3.12) 

This is a four-parameter formula for the complete solution in which the parameters 
a, d, h, i are positive integers. This same complete solution to the Diophantine equations 
(1.11) and  (1.12) can be obtained even more trivially by setting x = a, y = d, U = h and 
w = i. Solving for z and U then gives 

z = ( a  + d + h + i ) h i / ( h i  - a d )  U = adz/ hi  (3.13) 

precisely as indicated in (3.12). For each set of such parameters it is necessary to 
check that z is a positive integer, which would ensure U being an  integer. In terms of 



Solutions of Diophantine equations 1967 

Bell’s theorem (2.1 l ) ,  since b = c = e = f = 1, we have, in fact, a five-parameter solution, 
which reduces to a four-parameter solution due to the constraint equation (2.12). Note 
that the fifth parameter ( a  + d + h + i)/( hi - a d )  will not always be an integer, e.g. 

(i 4 s}-{; - s 7} - 4 4  4 4 ;  

has the four-parameter solution 
x = a = 2  y = d = 2  v = h = 6  w = i = 6  

so that the fifth parameter 

which is the exceptional case referred to in table 2. 

( a  + d  + h + i ) / ( h i  - a d )  =; 

4. Algorithms 

An algorithm for finding all the solutions of (2.12) was given by Srinivasa Rao and 
Rajeswari (1986) wherein (2.12) was reduced to the quadratic Diophantine equation 

with a = i, x = g, y = h, p = ad, y = be and 6 = abc + def + cfi, the solutions of which 
were given by Brahmagupta (cf Dickson 1952, p 64). Here we present an alternate 
algorithm to reduce (2.12) to the linear Diophantine equation of the form 

which is widely discussed in the literature (cf Dickson 1952). 
Since the nine integer parameters in the array (2.11) can take non-zero integer 

values we consider the following. 
(i) Let seven of these take successive values 1 to 10 (say) and these are arranged 

into a nest of loops. The two parameters excluded from this nest should belong to 
independent rows and columns, e.g. (a ,  e), (e, i) ,  ( b ,  d ) ,  ( c ,  e), (e, g ) ,  etc, in (2.11). 

(ii) The nine relative prime conditions to be satisfied by the parameters, given by 
(2.13), are checked. (Note that these conditions are the direct consequence of the 
three GCD conditions.) 

(iii) The constraint equation (2.12) now reduces to the form (4.2). For instance, 
if x = a, y = e, then 

(4.1) axy = p x  + yy + s - 

a x + p y =  y (4.2) 

a = bc+dg p = df + bh y = i (gh  - ~ f ) .  (4.3) 
( iv)  Solutions of (4.2) and (4.3) are sought such that gh>cf  and i ( g h - c f ) a  

b ( c + h ) + d ( f + g ) .  Paoli (cf Dickson 1952, p 401) noted that if (4.2) has integral 
solutions, any common factor of a and p must divide y and hence can be removed 
from every term. Hence, let a and p be relatively prime and positive. Let E denote 
the least positive integer such that y - a s  is divisible by p. Then every solution is 
given by 

x = ~ + p m  y = ( y  - C Y E ) / ~  - a m  (4.4) 
where the values of m making x and y positive are 0, 1,2,. . . , E ;  E being the largest 
integer less than ( y - a&)/  ap. 

Thus all the parameters subject to the constraint (4.2) are determined. 
Alternatively, a simpler algorithm is the one which arises due to the four-parameter 

solution given in (3.12): 
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(i) let all the four integer parameters, a, d, h, i take successive values 1 to 10 (say) 

(ii) check for hi> ad, compute z given by (3.13), and 
(iii) check for z being an integer and compute U given in (3.13). 
Having obtained the values of x = a, y = d, z, = h and w = i, as well as the values 

of U and z, the required degree-one polynomial zero is given by (2.14). 

and these are arranged into a nest of loops; 

5. Conclusions 

The one-, two- and four-parametric solutions given by Brudno (3.3), Brudno and Louck 
(3.4), Bremner (3.5) and (3.6), and ourselves (3.12) do not yield all the polynomial 
zeros of degree one of the Racah coefficient. To illustrate this explicitly, first we give 
in table 1 the minimum values of the parameters allowed in the one-, two-, four- and 
eight-parametric solutions given by different authors and the corresponding arguments 
of 

with the value of the invariant 
3 

I = 2  ( j k + I k ) = 3 z + x + y - 5 .  
k = l  

Note that 

corresponding to I = 21 is the first polynomial zero of degree one given in table I11 
of Srinivasa Rao and Rajeswari (1985), which lists 1174 of the Regge equivalent zeros 
with 21 < I 177. 

Table 1. Parametric solutions of the polynomial zeros of degree one of the Racah coefficient. 

Parameters 

Serial 
number Reference Equation 

Minimum 
General values 

Racah coefficient 
Invariant 

1, 1 2  j ,  11 12 13 I 

Brudno (1985) 
Brudno (1985) 
Brudno (1985) 
Brudno and  
Louck (1985) 
Bremner (1986) 
Bremner (1986) 
Present 
Present 

(3.1) 
(3.2) 
(3.3) 
(3.4) 

(3.5) 
(3.6) 
(3.12) 
(2.24) 

3 2 2  1 2 2  24 
2 2 2  : : :  21 
: 3 ; 1 : 3  21  

33 3 1  8 I1 12 7 137 

L3 5 ;  ; 3 ;  46 
15 12 :5 4 137 

2 2 2  : : :  21 
2 2 2  : : :  21 

_____~___ 

i Given the nine parameters of the 3 x 3 array, x, y, z and U, U, w are known (being the products of the row 
and column elements of the array, respectively). These values are used in (2.14) to obtain the arguments 
of the Racah coefficient. 



Solutions of Diophantine equations 1969 

Though, like the eight-parameter solution (2.11) and (2.12), the one- (3.2) and four- 
(3.12) parameter formulae also give rise to the first of the ‘non-trivial’ degree-one zeros, 
unlike the eight-parameter case, (3.2), as well as the two other one-parameter formulae 
(3.1) and (3.3), the two-parameter formula (3.4) and the four-parameter formulae (3.5) 
and (3.6), cannot generate the complete list of polynomial zeros of degree one. We 
illustrate this by listing in table 2 the first fifteen Regge inequivalent polynomial zeros 
of degree one and indicate which of the parametric solutions given in table 1 can 
account for them and which cannot. 

Table 2. Parametric formulae and the first fifteen of the inequivalent polynomial zeros of 
degree one of the Racah coefficient {:; :: :f}. J indicates that the parametric formula 
accounts for the zero and x that it does not. * exceptional case, see text for details. 

Serial number of parametric solutions 
given in table 1 (number of parameters) 

3 3 
2 2 2 2 3  i X J X  X X x J J  

3 2 2  1 2 2 d X  X X X x J J  
; 3 3  1 5 3  X X J X  X x J 

; 3 2  + 3 J J X  X X x J v’ 
5 4 2  3 4 4 J x  X X X X J J  

5 4 -  ; 2 ;  I X X J X  X X J J  

5 4  7 7 3  3 X X X X X x vJ d 
5 5 4 ;  I x J x X X x v’ J 
- 11 2 4 5  1 5 4  X X X X X x v’ J 
6 5 3  1 3 5 X X X x v  ’ x J J  
6 5 5  4 5 2 J x  X X X X J J  

6 6 4 2  - 1; x x X X X x J J 
- ~ 6 g 3 2 6  X x v’ x X x J d 
1 ; ;  $ 4 4  X X X X X X * J  
- 15 2 7 3 2 3 6  X X X X J X J J  

7 
2 

9 

9 7 

3 8 
2 

5 
2 

1 3  

Thus, from table 2 ,  it follows that the various one-, two- and four-parametric 
solutions, listed as 1-7 in table 1, yield only different subsets of all the possible 
polynomial zeros of degree one, since according to the theorem stated herein eight 
parameters are necessary and sufficient to account for all the solutions of the constrained 
multiplicative Diophantine equation (1.1 1) and (1.12). However, the exceptional 
four-parameter solution trivially obtained by us in (3.12) gives a complete set of 
solutions provided, as pointed out earlier, in terms of (2.11), the fifth parameter is 
permitted to take non-integral values, just as the substitution of (3.10) in (3.7) allows 
the first of the tabulated polynomial zeros of degree one. 
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